\(\int \frac {\sqrt {e \sec (c+d x)}}{\sqrt {a+i a \tan (c+d x)}} \, dx\) [418]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 30, antiderivative size = 36 \[ \int \frac {\sqrt {e \sec (c+d x)}}{\sqrt {a+i a \tan (c+d x)}} \, dx=\frac {2 i \sqrt {e \sec (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}} \]

[Out]

2*I*(e*sec(d*x+c))^(1/2)/d/(a+I*a*tan(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 36, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.033, Rules used = {3569} \[ \int \frac {\sqrt {e \sec (c+d x)}}{\sqrt {a+i a \tan (c+d x)}} \, dx=\frac {2 i \sqrt {e \sec (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}} \]

[In]

Int[Sqrt[e*Sec[c + d*x]]/Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

((2*I)*Sqrt[e*Sec[c + d*x]])/(d*Sqrt[a + I*a*Tan[c + d*x]])

Rule 3569

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(d*
Sec[e + f*x])^m*((a + b*Tan[e + f*x])^n/(a*f*m)), x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 + b^2, 0] &
& EqQ[Simplify[m + n], 0]

Rubi steps \begin{align*} \text {integral}& = \frac {2 i \sqrt {e \sec (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.62 (sec) , antiderivative size = 36, normalized size of antiderivative = 1.00 \[ \int \frac {\sqrt {e \sec (c+d x)}}{\sqrt {a+i a \tan (c+d x)}} \, dx=\frac {2 i \sqrt {e \sec (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}} \]

[In]

Integrate[Sqrt[e*Sec[c + d*x]]/Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

((2*I)*Sqrt[e*Sec[c + d*x]])/(d*Sqrt[a + I*a*Tan[c + d*x]])

Maple [A] (verified)

Time = 11.60 (sec) , antiderivative size = 32, normalized size of antiderivative = 0.89

method result size
default \(\frac {2 i \sqrt {e \sec \left (d x +c \right )}}{d \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}}\) \(32\)
risch \(\frac {2 i \sqrt {\frac {e \,{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}}{\sqrt {\frac {a \,{\mathrm e}^{2 i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}\, d}\) \(59\)

[In]

int((e*sec(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

2*I/d*(e*sec(d*x+c))^(1/2)/(a*(1+I*tan(d*x+c)))^(1/2)

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 64 vs. \(2 (28) = 56\).

Time = 0.24 (sec) , antiderivative size = 64, normalized size of antiderivative = 1.78 \[ \int \frac {\sqrt {e \sec (c+d x)}}{\sqrt {a+i a \tan (c+d x)}} \, dx=\frac {2 \, \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i\right )} e^{\left (-\frac {1}{2} i \, d x - \frac {1}{2} i \, c\right )}}{a d} \]

[In]

integrate((e*sec(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

2*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*(I*e^(2*I*d*x + 2*I*c) + I)*e^(-1/2*I*d*
x - 1/2*I*c)/(a*d)

Sympy [F]

\[ \int \frac {\sqrt {e \sec (c+d x)}}{\sqrt {a+i a \tan (c+d x)}} \, dx=\int \frac {\sqrt {e \sec {\left (c + d x \right )}}}{\sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )}}\, dx \]

[In]

integrate((e*sec(d*x+c))**(1/2)/(a+I*a*tan(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(e*sec(c + d*x))/sqrt(I*a*(tan(c + d*x) - I)), x)

Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 76 vs. \(2 (28) = 56\).

Time = 0.35 (sec) , antiderivative size = 76, normalized size of antiderivative = 2.11 \[ \int \frac {\sqrt {e \sec (c+d x)}}{\sqrt {a+i a \tan (c+d x)}} \, dx=\frac {2 i \, \sqrt {e} \sqrt {-\frac {\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - 1}}{\sqrt {a} d \sqrt {-\frac {2 i \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - 1}} \]

[In]

integrate((e*sec(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

2*I*sqrt(e)*sqrt(-sin(d*x + c)^2/(cos(d*x + c) + 1)^2 - 1)/(sqrt(a)*d*sqrt(-2*I*sin(d*x + c)/(cos(d*x + c) + 1
) + sin(d*x + c)^2/(cos(d*x + c) + 1)^2 - 1))

Giac [F]

\[ \int \frac {\sqrt {e \sec (c+d x)}}{\sqrt {a+i a \tan (c+d x)}} \, dx=\int { \frac {\sqrt {e \sec \left (d x + c\right )}}{\sqrt {i \, a \tan \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate((e*sec(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(e*sec(d*x + c))/sqrt(I*a*tan(d*x + c) + a), x)

Mupad [B] (verification not implemented)

Time = 5.70 (sec) , antiderivative size = 40, normalized size of antiderivative = 1.11 \[ \int \frac {\sqrt {e \sec (c+d x)}}{\sqrt {a+i a \tan (c+d x)}} \, dx=\frac {\sqrt {\frac {e}{\cos \left (c+d\,x\right )}}\,2{}\mathrm {i}}{d\,\sqrt {a+\frac {a\,\sin \left (c+d\,x\right )\,1{}\mathrm {i}}{\cos \left (c+d\,x\right )}}} \]

[In]

int((e/cos(c + d*x))^(1/2)/(a + a*tan(c + d*x)*1i)^(1/2),x)

[Out]

((e/cos(c + d*x))^(1/2)*2i)/(d*(a + (a*sin(c + d*x)*1i)/cos(c + d*x))^(1/2))